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Abstract

Over the past forty years, surprisingly little progress has been made on user font selection. Whereas
the number of fonts available to users has increased by several orders of magnitude, the font se-
lection interface of almost every major word processor and design tool has remained the same: an
scrollable, alphabetized list of font names. This interface does not provide users with any ability
to search for fonts based on style—a problem, since users often look for fonts matching certain
style characteristics—and is an increasingly unfeasible method of search as the number of available
fonts continues to grow. This project attempts to address this problem, hypothesizing that training
autoencoder-like neural networks on font image data will yield meaningful quantitative style encod-
ings for typefaces, upon which useful font selection interfaces can be built. We implement three
models of increasing complexity—our Basic Autoencoder model, a Style Transfer model incorporat-
ing vector character embeddings as model input, and a model adapted from Srivatsan et al. [15]
which utilizes convolution and variational encoding—and find that the model adapted from Srivat-
san et al. and trained on our full dataset is highly capable of representing a wide variety of typeface
styles. We implement an end-to-end font selector webapp based on these model style encodings,
and find preliminary results in a small user study suggesting that our font selection tool effectively
allows users to locate and select fonts based on style characteristics.
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Chapter 1

Introduction

1.1 Motivation
According to Karen Cheng’s 2006 book Designing Type, there were, at the time of publishing, likely
over 300,000 individual typefaces available to users [5]. Today, almost twenty years later, that number
is no doubt higher; and yet, we use essentially the same font selection tools developed decades ago: a
scrollable list of font names. All major word processors (Microsoft Word, Apple Pages, Google Docs)
and most other graphic design tools use this decades-old interface. A few improvements have been
made on the basic list-based font selection model (e.g. displaying font names in their own typeface
and list alphabetization), but the fundamental aspects of the interface have remained unchanged.
Here there arises an issue: compared with these early word processors, users have access to several
orders of magnitude more typefaces—hundreds of thousands compared to dozens. Users cannot be
expected to navigate through such a large number of fonts; scrolling through 300,000 items is not a
reasonable ask. Moreover, this list-based interface does not align with the typical needs of a user:
when searching for fonts, users often have a particular style in mind (professional, casual, festive),
and this basic list-based interface does not incorporate any notion of style as part of its search.
Notably, alphabetical order in a list of typefaces does not help a user who does not already know
the name of the font they are searching for. After over forty years of little development in the area
of font selection interfaces—while the numbers of available fonts has increased substantially—there
is a need for better font selection tools, particularly interfaces which take into account meaningful
aspects of typeface style.

1.2 Goals and Contributions
This thesis aims to address this problem. We show that training autoencoder-like neural networks on
font image data yields meaningful style encoding vectors which quantify different aspects of typeface
style, upon which useful style-based font selection tools can be built. We implement three neural
network models, all variants of an autoencoder, which encode typeface style in the intermediate
vector representation between the autoencoder’s encoding and decoding blocks. Using the style

9



CHAPTER 1. INTRODUCTION 10

encodings from the most effective model, we build a novel font selection webapp that leverages spatial
information from the model. Evaluating our models’ encoding spaces using attribute categories
provided by Google Fonts, we find that our models effectively encode certain aspects of style, with
similarity scores within style categories increasing as model sophistication increases. We additionally
conducted a font-matching user study comparing our font selection tool against two baselines; while
we are not able to draw conclusions about quantitative performance between tools given the small
size of our user study, the qualitative feedback we collected suggests that our font selector webapp
provided several desireable aspects for font exploration.

Ultimately, we find that the models we have implemented, especially our final model adapted
from Srivatsan et al. [15] and trained on our full dataset, effectively encode many aspects of typeface
style. We additionally demonstrate—based on the preliminary findings from our user study—that
these style encodings can be used to create useful style-based font selection interfaces. This research
contributes to the field of typeface style inference and suggests that further work can be done towards
the issue of creating effective and simple style-based font selection tools.

1.3 Roadmap
This thesis document is organized as follows. Chapter 2 explores some of the background and
history of font selection tools, looking at early font selection interfaces as well as a couple of recently
developed language-based tools; explains the structure of autoencoders and autoencoder-like models;
and reviews related work on font selection and font inference. Chapter 3 details our three models
(Basic Autoencoder, Style Transfer, and our model adapted from Srivatsan et al.), explains how we
obtain the style encodings used by our font selection tool, discusses the design choices for our novel
font selector interface, and details the end-to-end system upon which the tool is built. Chapter 4
includes a quantitative evaluation of our models based on average encoding distance scores grouped
by attribute categories from the Google Fonts library, as well as a user evaluation of our font selection
tool. Chapter 5 summarizes our findings, enumerates a few areas for future work, and explains some
of the lessons learned in the process of this extended research project.



Chapter 2

Background

In this chapter, we provide necessary background to contextualize our research. The section Font
Selection explores the history of font selection tools, identifying a few recent areas of development
which vary from the common list-based interface. In Autocoders, we introduce the autoencoder
model and its variations, laying the fundamental structure for the autoencoder-based neural network
models we implement in this work. Finally, in Previous Work, we review related work on font
selection and font inference, discussing important contributions which have informed our model
design and system implementation.

2.1 Font Selection
This section explores important background information about the history and current state of
font selection tools. Comparing one of the earliest font selection interfaces—from the built-in word
processor on the 1981 Xerox Star—to the typical font selection interfaces on Google Docs, Microsoft
Word, and Apple Pages, it is evident that little progress has been made in the way we select fonts.
Nevertheless, there has been some recent innovation in typeface selection interfaces, and we examine
some of these new approaches—specifically the new language-based font selection models of the
Google Fonts website and Canva, a popular online graphic design tool. We additionally discuss the
difficulty of creating language-based font selection tools. Lastly, we provide an analogue between
font selection interfaces and the much more diverse field of color selection, another important task
in graphic design, to envision alternative modeling schema for font selection.

2.1.1 Lack of Development in Font Selection Interfaces

Surprisingly little progress has been made in the past several decades on user font selection. Figure
2.1 shows the font selection interface on the 1981 Xerox Star, one of the earliest personal computers
to include a multi-font word processor. This interface will probably look familiar to a modern user:
it provides control over font size; bold, italic, underline, and strikethrough toggles; superscript and
subscript options; and, importantly, a scrollable list of fonts to choose between. Compared to the

11



CHAPTER 2. BACKGROUND 12

Figure 2.1: Font selection interface in Xerox Star (1981)

modern font selection interfaces shown in Figure 2.2, the only significant difference over this 44-
year gap is the alphabetization of the font selector list; otherwise, these interfaces are practically
identical. While there are many beneficial aspects of this interface—control over size, boldness, and
other useful dimensions of typeface—the list-based typeface selector has become increasingly unfit
for the task of font selection. Whereas the Xerox Star provided its users with a small number of
typefaces to choose between, today the number of individual typefaces available to users (although
impossible to enumerate exactly) almost certainly exceeds 300,000 [5]. It is not feasible for a user to
scroll through this many typefaces when making a font selection. Additionally, this interface provides
little guidance about style: in an alphabetized list, there is no particular relationship between nearby
fonts, or any capability for style-based search. This leads users to find a few fonts they like and
stick with them, rather than explore the wide variety available to them. Without a better tool for
navigating the many dimensions of typeface style, this will remain the case.

O’Donovan et al. [12] lists several reasons for the difficulty of developing font selection tools.
The first issue, as discussed above, is the sheer number of available fonts. “Most computers are now
equipped with hundreds of fonts,” they note, while online resources provide access to hundreds of
thousands. Another issue is a lack of obvious ways to categorize fonts in a manner which corresponds
to user goals. While there exist broad categories like Serif, Sans Serif, and Handwritten, these must
be manually designated on a per-font basis, and they are not necessarily helpful to every user.
A college student, for example, might know to choose a Serif font for their paper to convey an
academic mood—or, more practically, to fulfill certain departmental design expectations—however
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Figure 2.2: Current font selection interfaces in Microsoft Word, Google Docs, and Apple Pages

another user, looking to design a new logo for their coffee shop, might not find the distinction
between Serif, Sans Serif, and Handwritten typeface particularly useful or informative. Typical
users lack the tools, given the current state of font selector interfaces, to properly consider the wide
range of typefaces and confidently choose the right font—one of the most fundamental decisions in
effective text-based graphic design. Finally, users vary in their font selection goals. One user may
be looking to identify the font they saw on a store sign or a brochure—or to find a free-to-use font
which is similar to a commercial one they have identified—while another may be looking to match
a particular mood, or to choose a font that fits well with the rest of their document. A third may
simply be exploring a large set of fonts like Adobe TypeKit or Google Fonts, curious to find new,
exciting typefaces. O’Donovan et al. argue—and we agree—that current methods of font selection
fall short on these issues. Given the growing number of fonts available to the modern user, a better,
more useful system for typeface selection is long overdue.
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2.1.2 Font Selection Innovation

There has been some limited progress, in recent years, in the field of font selection interfaces.
Specifically, both Google Fonts and Canva, a popular online graphic design tool, have experimented
with language-based font selection tools. Both of these interfaces break from the common list-based
font selection tool, but both also have some significant drawbacks and flaws. This section will explore
these two novel font selection interfaces and their respective contributions.

Figure 2.3: Some typeface categorizations in the new Google Fonts interface

The new font selection interface on the Google Fonts website1 was released in early 2025. Whereas
Google previously organized their fonts into 5 broad categories (Display, Handwriting, Monospace,
Serif, and Sans Serif), their new interface introduces a much larger set of typeface categories, broken
into broader parent categories (see Figure 2.3). In the “Feeling” category, for example, users can filter
“Happy” fonts, “Calm” or “Playful” fonts, and “Childlike” or “Awkward” fonts. The new interface
also includes appearance categories like “Techno” or “Art Deco,” as well as holiday categories for
Halloween, Hanukkah, Christmas, and Holi, among others.

Google Font’s categories break with the basic list-based interface; however, the tool has several
drawbacks. For one, the user is forced to choose between discrete categories, rather than an open-
ended text input, limiting their selection process to preconceived descriptors. Additionally, these
categorizations are subjective; and while many of the groupings seem fairly accurate, some are

1https://fonts.google.com
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Figure 2.4: Some of the “Christmas” fonts in Google Fonts do not seem very Christmassy

questionable (such as the “Christmas” fonts in Figure 2.4). Most importantly, Google has not
incorporated this new font selection tool into their main Google Suite applications (Google Docs,
Google Slides, and Google Sheets) where the majority of their users are choosing fonts. Most users
are unfamiliar with the Google Fonts website, and therefore will not use the interface. This new font
selector tool, available only from a separate website, is an interesting experiment in language-based
font selection, but not yet more than that.

Canva, a popular online graphic design tool, has also experimented with a language-based font
selection tool. Their main design interface allows users access to select fonts via a text input field. For
example, a user could type “Modern” and they would be presented with a wide-variety of modern-
style fonts. However, while the input prompt appears open-ended, the tool actually only works for
a small set of keywords; for most text input, it will either yield no results or simply return fonts
whose name contains that keyword (see Figure 2.5). For many unseen inputs like “Professional,”
“Cheerful,” “Ancient,” and “Lightweight” the tool returns no results at all.

2.1.3 Issues with Language-Based Font Selection

Both of the above tools use keyword descriptors for font selection, one with predetermined style
categories (Google Fonts) and the other with an open-ended search box which, in reality, allows only
a limited set of keywords as input (Canva). The direction of this approach, however, is not a bad
one. Language is one of the ways in which humans fundamentally conceive of the world, including
with respect to visual style. Especially given the popularization of Large Language Models (LLMs)
and chatbots, there is certainly an open space for innovation with language-based font selection.
However, there are a couple key problems with creating these language-based font selection models.
First of all, visual style is quite subjective: one user might find a certain font “wacky” while another
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Figure 2.5: Example usages of the Canva text-based font selector tool

might find that font “sad” or “disgusting.” A font which one user finds “professional” another might
find “playful.” Building a language-based model for font selection should therefore account for user
subjectivity in its recommendations. Secondly, there is a relative lack of datasets which connect
typefaces to language-based style characteristics. Shaikh et al. [14] perform an online study with
hundreds of participants to generate a dataset of only 20 fonts and 15 style adjectives. O’Donovan et
al. [12] generate a larger dataset of 200 fonts and 31 style adjectives, but this is still relatively small
when compared with the hundreds of thousands of available fonts and the many possible dimensions
of style. For this project, we mostly avoid the issue of language-based font selection, and rather
focus on the use of unsupervised neural models in building useful style-based font selection tools.

2.1.4 An Analogue: Color Selection

A useful analogue when considering the issue of typeface selection is another common problem
in graphic design: color selection. The field of color selection has produced a much wider range
of selection interfaces, which suggests a potential for a much more diverse set of font selection
tools. Figure 2.6 shows a common, basic color selection tool containing several ways to interact
with its many available colors: sliders, numeric input, and a 2-dimensional gradient. Color can
be represented using a 4-dimensional basis called RGBA: red-value, green-value, blue-value, and
transparency-value. The first three are based on a hexadecimal scale, allowing values between 0 and
255, while the transparency value is constrained between 0 and 1. By representing color using a
multi-dimensional basis, users have an intuitive, finer-grained control over the color selection process.
This is more useful than, say, selecting from an alphabetized list of colors (Apricot, Aquamarine,



CHAPTER 2. BACKGROUND 17

Figure 2.6: A basic color selection interface with gradient, numeric, and slider controls

Figure 2.7: Adobe Color selection interface, with a color wheel, multiple color bases, color harmony-
based selection, and the ability to save colors
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Baby Blue, Canary Yellow...), which—similar to an alphabetized list of fonts—does not provide users
with a very meaningful way to navigate the dimensions of color. There are many other popular tools
for color selection: Adobe Color, for example, utilizes a popular color-wheel tool, and additionally
includes features to change color basis (CMYK and RGBA are the most common color bases, but
other more obscure ones exist), pick a set of colors based on a particular harmony (Monochromatic,
Triad, Complementary, e.g.), and save colors to a library for later access (see Figure 2.7).

The wide range of diverse color selection interfaces and color bases suggests a potential for
similarly-diverse, useful selection tools for typeface which provide control over the many dimensions
of typeface style. While typefaces and their style cannot be decomposed as easily as color, their
style can be represented using a vector basis—as we will show in subsequent chapters—and building
selection tools on a vector space of style dimensions could allow users greater control in typeface
selection—similar to the level of control users have in color selection. Imagine, perhaps, a gradient
of fonts, or sliders which control different aspects of font style. These ideas are not farfetched: as
our research will show, neural networks—specifically autoencoder-like neural network models—can
be used to distill quantitative style encodings from font image data, providing a foundation upon
which to build better style-based font selection tools.

2.2 Autoencoders
As previously stated, we hypothesize that neural networks might provide a useful foundation for font
selection tools by generating typeface style encodings. More specifically, we focus on autoencoder
and autoencoder-like models in our neural network design. This section provides background on the
autoencoder model and why autoencoder-based neural networks might provide a useful foundation
for creating style-based font selection tools.

2.2.1 Autoencoder Model

The autoencoder [13] is a specific type of neural network trained to exactly reconstruct its input.
The model is composed of two parts: an encoder, which transforms the input to an intermediate
representation (usually smaller than the input representation) through a series of linear and nonlinear
operations; and the decoder, which transforms the intermediate representation back to the original
input size. By minimizing the loss of this neural network during training, the encoder learns to
condense the input data for later reconstruction, and the decoder learns to reconstruct that data
based on the intermediate representation generated by the encoder.

The autoencoder model may seem of little use; why would we want to reconstruct data which
we already have? The main goal of an autoencoder, however, is not the final reconstructed output
but rather the intermediate representation, which distills the essentials of the input. In order for
the decoder to be able to accurately reconstruct input data which it has never seen, the encoder
part of the model must encode an intermediate encoding that captures enough salient aspects of the
input for the reconstruction stage. Thus, the autoencoder’s intermediate representation tends to be
a rich and concise summary of the input. In our research, we leverage these encodings as a proxy
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Figure 2.8: Basic autoencoder model applied on an image from MNIST, a dataset of handwritten
images widely-used for image classification tasks [10]

for typeface style. Bank et al. [3] write:

...the goal of autoencoders is to get a compressed and meaningful representation. We
would like to have a representation that is meaningful to us...

In order to create meaningful representations, however, some steps must be taken to avoid sim-
ply learning the identity function. To accomplish this, the autoencoder model usually includes a
bottleneck—meaning that the encoder must compress the input before giving it to the decoder (see
Figure 2.8). Therefore, the model cannot simply learn the identity function and must learn to pro-
duce a useful, condensed version of the input. In our case, the purpose of training an autoencoder
model to reconstruct font data is not the output images, but rather these intermediate encodings.
Importantly, while a bottleneck is the most common technique to achieve this effect, other methods
such as adding Gaussian noise [3] can be used instead of or in addition to a bottleneck.

2.2.2 Variations on the Autoencoder

There have been many variations on this basic autoencoder model [11]. While the basic autoencoder
is unsupervised, it is possible to feed additional data into the autoencoder, such as data labels, in
order to coerce the model to ignore these aspects of the input data in the construction of an in-
termediate representation. (In our research, we employ this method to disentangle content—i.e.
the character being represented—from style.) Another alteration of the original autoencoder is the
variational autoencoder (VAE) model [8], which uses probabilistic distributions to improve autoen-
coder performance, especially with respect to generative tasks. Rather than encoding an explicit
intermediate encoding, VAEs encode the parameters of a multi-dimensional Gaussian distribution
which represents the probabilistic space of the intermediate encoding. The decoder then samples
randomly from the distribution and proceeds with the decoding task. This probabilistic model is
especially useful in generative tasks, when the goal is to generate new content (e.g. to generate a new
character in a font); but the continuous latent space encoded by VAEs can also be directly used, as
in our case, as a compact representation of salient input properties like visual style.
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Figure 2.9: Group Interface, Attribute Interface, and Search-By-Similarity selection tools from
O’Donovan et al. [12]

2.3 Previous Work
There has been previous scholarly work on improving font selection interfaces, especially based
around font inference models. This section explores some of these models, one based on crowdsourced
data, and the others on neural inference models. Both of these approaches have informed our
research, but the neural inference models have particularly influenced our model implementations.
Particularly, we adapt the Srivatsan et al. model [15] in our work and use the style encodings trained
by the model to build our typeface selector tool.

2.3.1 Crowdsourced Models

O’Donovan et al. [12] proposes three novel font-selection interfaces, built on crowdsourced data from
Amazon Mechanical Turk (MTurk): one based around verbal attributes such as “formal,” “friendly,”
or “legible” called Attribute Interface; another which clusters fonts hierarchically based on visual
similarity, called Group Interface; and a third, to be paired with the other two methods, which
provides users with a list of similar fonts to the current selection, called Search-By-Similarity (see
Figure 2.9). The researchers built these models on crowdsourced data collected through MTurk:
they prompted users to answer questions such as “Which of these two fonts is more strong?” or
“Which of these fonts is more silly?” to collect attribute data, and asked questions like “Which
of these two fonts—Font B or Font C—is more similar to Font A?” in order to build similarity
data. The Group Interface model splits fonts into large categories based on similarity, creating a
tree-like font selection tool where users can progressively narrow down their font selection task. The
Attribute Interface, similar to the Google Fonts and Canva interfaces, attaches adjective descriptors
to fonts, which is helpful as humans tend to conceptualize style based on verbal descriptors. Finally,
they use the similarity data to create their Search-By-Similarity tool, to be used in conjunction with
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Figure 2.10: Paired-glyph matching in Cho et al. [6]

the other two methods: given a selected font, which fonts are most similar according to other users?
This provides an important principle for typeface selection: if a user is looking to select a font based
on style characteristics, it is useful to see other fonts that are similar according to other users. All
of these tools are potentially useful ways to navigate typeface selection by means of style, but it
should be noted that basing these attributes and similarity scores on crowdsourced data means that
these tools may not align with every user’s subjective sense of style. O’Donovan et al. additionally
conducted user studies, also on MTurk, presenting users with either font matching or design tasks to
evaluate their interfaces against a baseline font selector tool. The researchers found positive results
for their novel font selection tools: participants were three times more likely to succeed in a font-
matching task using any of the three proposed interfaces compared with a basic list-based interface,
and they also found a small statistically significant improvement in user performance on the design
task between their selection interfaces and the baseline.

2.3.2 Inference Models

There has also been some effort to build inference models around font character images, sometimes
with the explicit purpose of building better user interface for font selection. Cho et al. [6], for
example, builds a model with the explicit goal of generating latent space encodings of glyphs which
are easily differentiable based on their font. They describe their model design as such:

For the discriminative representation of a font from others, we propose a paired-glyph
matching-based font representation learning model that attracts the representations of
glyphs in the same font to one another, but pushes away those of other fonts.

Their paired-glyph matching, shown in Figure 2.10, involves selecting random pairs of glyphs
and training the model to prefer a low cosine similarity (more similar) between the representations
if the glyphs are characters in the same font, and a high cosine similarity (less similar) if the glyphs
come from different fonts. While Cho et al. succeeds in their goal of clustering the latent space
representations of glyphs by typeface, it is unclear how well these encodings represent the stylistic
aspects of typeface. Notably, the training technique focuses on decreasing the cosine similarity of
encodings for characters of different typefaces, but it does not seem to have a mechanism to actually
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Figure 2.11: Latent space of style embeddings across model techniques in Cho et al. [6], with color
representing the typeface of a given character style encoding

Figure 2.12: Generative process of model from Srivatsan et al. [15]

consider the style of a character or typeface. Rather, the training data for their model is essentially
the name of a font. As Figure 2.11 shows, their model performs well at discriminating character
style encodings based on font—their model effectively clusters characters according to their typeface,
denoted by point color—but the model space may not represent meaningful dimensions of typeface
style (weight, size, serif) beyond simply separating fonts which are not identical.

Relevant to our work is their evaluation of different model architectures for generating style
encodings. As shown in the latent space maps in Figure 2.11, they employ three different model
architectures in addition to their paired-glyph matching: the basic autoencoder model, style transfer
(generating another character in the same font given an input character), and classification (pre-
dicting which font is represented in a glyph). There is an overlap in some of their model choices and
ours (namely, autoencoder and style transfer), and the figure they provide is useful in visualizing
the typeface-clustering effectiveness of these various models.
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Figure 2.13: t-SNE projection of latent font variables in Srivatsan et al. [15] with centroids

Srivatsan et al. [15] introduce a training method based on latent probability space and a tensor
factorization approach well-founded in past literature [7, 17, 19, 16]. Their model explicitly seeks to
disentangle style and content—to encode the typeface style of a glyph as separate from the actual
character it represents. The model architecture, shown in Figure 2.12, convolutionally encodes a
probabilistic encoding of a font given its complete character glyph set (with a chosen number missing)
and corresponding character embeddings, and uses that latent probability vector along with a given
character embedding to reconstruct the missing glyphs. Their model is particularly effective at
reconstructing glyphs, when compared to peer models, and it also succeeds against a state-of-the-art
peer model [2] when evaluated by humans on Amazon Mechanical Turk. The model additionally
yields high quality style encodings, with similar fonts having similar encodings in the model space.
Figure 2.13 shows a t-SNE projection [18] of their model latent space with “A” glyphs displayed at
each centroid given k-means clustering (k = 10). These centroids are representative of the typeface
styles existing at the given area of the t-SNE plot. Lastly, Srivatsan et al. find that, qualitatively,
their model seems to effectively recreate many important aspects of character style including shape,
shadow, and texture.

As previously stated, we chose to adapt the Srivatsan model in our research, porting it to
a more recent version of Python (3.13) and PyTorch (2.5.1) and training the model on a larger
dataset, comprised of the model’s original training data, preinstalled Apple fonts, and the set of
fonts available from the Google Fonts repository. We implement this model, along with two of our
own models, and compare their respective style encodings in the following sections.
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Model and System Design

This chapter details our model implementation and system design. In Data Collection, we list the
sources of our font file data as well as our methods for data handling. Our Models section describes
the design of our three autoencoder-based models: the Basic Autoencoder model, Style Transfer
model, and a more sophisticated model adapted from Srivatsan et al. [15]. Finally, in the System
Design section, we discuss our considerations in building a font selection tool based around our model
style encodings, and we explain the design of our final implementation: a font selection interface
which navigates high-dimensional typeface style space.

3.1 Data Collection
In order to train models to effectively encode the style of typefaces, it was necessary to create a
dataset of characters from a wide variety of fonts. Given the stylistic diversity between fonts, it was
important that the dataset be large and representative enough to encompass the variety of existing
typeface styles—so that the model would work effectively not just for fonts in its training set, but
for unseen fonts as well.

The first important consideration was the source of our data. The model proposed by Srivatsan
et al. [15] was trained on the large Capitals64 dataset constructed by Azadi et al. [2]. We also chose
to use this dataset, but opted to add some additional sources of fonts. Specifically, we included the
entire library of fonts from the Google Fonts repository,1 which contains a wide range of free-to-use
fonts, and we also included the default fonts which come preinstalled with macOS (which contains
many of the well-known proprietary fonts not represented in Google Fonts or Capitals64). In the
latter two cases, we only considered fonts which supported English-language text, choosing to ignore
typefaces in other scripts (Chinese, Arabic, Bengali, e.g.) for the scope of this research. Ultimately,
we included in our dataset 10,682 typefaces from the Capitals64 dataset, 3,577 from Google Fonts,
and 132 fonts from the installation of macOS. We felt that this combined dataset (n = 14, 391)
would be both sufficiently large and representative of a wide variety of typeface styles, while still
containing well-known proprietary fonts such as Times New Roman and Helvetica.

1https://github.com/google/fonts/
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The fonts we sourced came as TrueType (.ttf) and OpenType (.otf) binary font files, both of
which contain the raw data for individual typefaces or multiple typefaces in one family (Helvetica
and Helvetica Light, e.g.). We used the open-source FontForge scripting package2 to create an
SVG vector image file for each character represented in each typeface, then rasterized the character
vector files to 64 × 64 pixel images in PNG format. We additionally created 1664 × 64 images
representing the 26 capital letters (A-Z) in each typeface to fit the Capital64 data format expected
by the Srivatsan et al. model implementation. For font files which contained multiple styles in a
given font family (e.g. Times, Times Italic, and Times Bold), we treated each style as a separate
typeface, since their respective style representations should be meaningfully different.

3.2 Models
Over the course of our research, we employed several model training methods. This section details
the various approaches and their respective model architectures. All models were trained using
PyTorch 2.5.1 and Python 3.13 running on a Bizon G7000 G2 GPU server with 2x 32-Core 2.00
GHz Intel Xeon Gold 6338 CPUs and 4x NVIDIA RTX A6000 48 GB GPUs. Generally, we trained
our models until the model loss plateaued, i.e. the font reconstruction task stopped improving.

3.2.1 Basic Autoencoder

For our first approach, we adapted the autoencoder model proposed in [13]. As previously explained,
an autoencoder is a neural network trained to compress and reconstruct input data. By doing so,
it can learn to generate meaningful encodings of input data; in the case of our research, we hoped
to capture typeface style in these model encodings. We implemented an autoencoder model trained
on our large dataset of font character images, represented as pixel-intensity matrices. Our model
uses a series of alternating linear layers and ReLU activation functions to compress the 64×64 pixel
images (flattened to length-4096 vectors) down to length-6 vectors, approximately halving the size
of the vector with each linear layer. The decoder, conversely, expands the representation back to
its original size with a series of linear and non-linear layers, ultimately converting the vectors back
into 64× 64 pixel intensity matrices. To compute the loss of our model, we used mean squared error
(MSE) between respective pixel values in the input and output matrices. After computing this loss,
we translated the pixel intensity matrices back into their original image form, in order to visually
evaluate the success of our reconstructions.

Some example input and output from our initial autoencoder model can be found in Figure 3.1.
Even early in the training, the model was able to accurately reconstruct most of the input characters,
although it struggled more with more complicated typeface styles. However, we quickly identified
an issue with this model: the autoencoder has no obvious incentive to distinguish form (the style of
a character, defined by its font) from content (the actual letter which is represented). For example,
an A in Helvetica looks substantively different from an A in Comic Sans, but an A in Helvetica also
looks substantively different from a B in Helvetica, simply because they are different letters. In fact,

2https://fontforge.org/en-US/

https://fontforge.org/en-US/
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Figure 3.1: Our basic autoencoder model inputs/outputs mid-way through training

Figure 3.2: An A in Helvetica is structurally more similar to an A in Comic Sans than to a B in
Helvetica
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Figure 3.3: Our Style Transfer Autoencoder model, which attempts to recreate a different character
in the typeface of an input character image

the Helvetica A is structurally more similar to the Comic Sans A than the Helvetica B (see Figure
3.2). Our basic autoencoder does not have sufficient information to decouple the stylistic similarity
of Helvetica’s A and B from the structural similarity of the the Comic Sans A and the A in Helvetica.
Under this model, the dimensions of the resulting style encoding likely conflate variance in style with
variance in the characters themselves.

In order to create style encodings for style-based font selection, an effective model must be able to
understand character as separate from style. Characters in the same font should all be understood
to have one style, determined by the font itself, while two characters in different fonts should have
different style encodings (which might be more or less similar depending on their respective styles).

3.2.2 Style Transfer Autoencoder

To disentangle style from character, we trained a modified autoencoder on a different task: to
recreate other characters in a given font. For example, given an input image of a C character, we
trained the model to output a Q character in that same font. In order to provide the necessary
information for the model to succeed in this task, we included two additional vectors in the model
input: one representing the character of the input image, and the other representing the target
character. Figure 3.3 illustrates this schema. The model takes as input a characer image, along with
the vector embedding parameter representing the character information, and additionally takes
the target character embedding as a mid-way input to provide the decoding step with the requisite
information to construct the target image. By minimizing the MSE between the generated character
(say, a Q in Arial) and the ground truth image in our dataset, we hypothesized that our model would
better isolate style in its encodings. The model has no need to represent character in the intermediate
encoding, since both the encoder and decoder explicitly receive auxiliary character information.
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Figure 3.4: Example instance of our style transfer model part-way through training

The inclusion of auxiliary input vectors required that there be a fixed-size character set. We
originally experimented with limiting our training data to only include fonts which contained all
uppercase (A–Z) and lowercase (a–z) English characters; however, in order to incorporate the Cap-
itals64 dataset—which only includes capital letters—we decided to limit our training only to fonts
including the English uppercase letters. Fonts which did not contain the 26 uppercase letters A–Z
were excluded from training.

For the style transfer model, we had to modify the data loading process. Rather than dealing
with every individual character in a font, we needed to handle every pair of characters in a font.
Since we were considering 26 characters per font, our model trained on 262 = 676 character pairs
per typeface (including a character paired with itself). Additionally, since we were considering the
input/output characters as data inside our model, unlike the basic autoencoder approach, we also
created embeddings for each of the characters within our model architecture. The input embedding
was concatenated with the flattened input image before it was fed to the encoder, and the output
character embedding was concatenated with the intermediate vector representation between the
encoder and decoder. Finally, we computed the MSE loss not against the input image but against
the ground truth goal image representing the target character in the selected font.

Figure 3.4 shows our style transfer model part-way through training. The model receives the
input B glyph and the input/output character embeddings (not shown), and it attempts to recon-
struct the h glyph in the same typeface. By giving the model explicit vector representations of the
input/output characters, we hypothesized that the model would more effectively isolate the style of
the glyphs as separate from their content, giving us better internal representations to leverage for
style-based typeface selection.
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Figure 3.5: Diagram of Srivatsan et al. model architecture [15]

3.2.3 Srivatsan Model

Our final model, which we adapted from Srivatsan et al. [15], mirrors our previous approaches
in many ways, but it introduces several techniques hypothesized to improve the stylistic encoding
ability of the model on our dataset. Most notably, the Srivatsan model incorporates variational
inference and convolution. It may be necessary to define these terms: a variational encoder, rather
than explicitly encoding an intermediate vector representation between the encoder and decoder
steps, produces intermediate parameters µ and σ of a multi-dimensional Gaussian distribution, from
which a vector representation is randomly sampled and then decoded. Proposed by Kingma et al.
[9], variational autoencoders (VAEs) are often used for generative tasks in deep learning, as they
represent a large probabilistic space of outcomes. However, even in non-generative tasks such as
ours, the variational model can generate useful, often more stable model encoding spaces.

Convolution, and convolutional layers—a technique which is separate from variational modeling
but can be used in tandem with that technique, as in the case of the Srivatsan model—involves a
moving filter called a kernel which reduces spatial dimension. In the case of typeface style encoding,
this dissociates style elements from their particular location in training images. For example, the
serif elements of characters in a serif typeface (i.e. the tail at the ends of characters like T and
S) appear at many different locations in a training image depending on the particular character
and typeface; using convolutional layers allows the model to recognize these elements regardless of
their specific location in an image. Therefore, the model better identifies serif elements across many
different characters, locations in those characters, and serif typefaces.

Lastly, the Srivatsan model approaches style encoding using a slightly different task: it includes
a full set of characters as input data for character reconstruction, and it approaches the character
reconstruction task across an entire typeface at once—rather than reconstructing each character
or character pair individually. Similar to our Style Transfer model detailed in 3.2.2, the Srivat-
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Figure 3.6: t-SNE plot of style encodings from Srivatsan et al. [15] colored by weight (left) and
Google Fonts style category (right)

san model aims at recreating different characters across a typeface and involves vector character
embeddings for those input/output characters; however, the model takes the full set of uppercase
characters A–Z and randomly masks a set number of characters for reconstruction, rather than
dealing with characters individually. The model reconstructs the missing characters based on the
given (non-hidden) characters in the font, as well as the character embedding information for the
hidden characters. The encoder creates a Gaussian encoding from the input, and the decoder uses
that encoding along with the respective respective character embedding for the masked glyphs to
reconstruct the full character set for a given typeface. The model also applies a 2-Dimensional Dis-
crete Cosine Transform (2-D DCT-II) [1] to the generated images before computing the loss, with
the goal of generating sharper images. DCT-II is simply a rotation in vector space, meaning the
resulting probability measurements and vector distances are preserved. A diagram of the Srivatsan
model architecture can be found in Figure 3.5.

The Srivatsan model does an adequate job at glyph reconstruction—one of the focuses of the
paper—but also generates promising style encodings. Figure 3.6 shows a t-SNE [18] plot of the
latent style encodings generated by the Srivatsan model, colored by both weight and Google Font
style category. As the figure shows, it is quite effective at clustering fonts with similar weight (bolder
or lighter) and more ambiguous stylistic aspects provided as metadata with Google Fonts.

We ported the original code from Srivatsan et al. [15] from Python 2.7 and PyTorch 1.1.0 to
Python 3.13 and PyTorch 2.5.1 and trained it on our extended dataset, with 10 hidden characters
per font, for 184 epochs. After training, we ran the model on a modified version of our Google
Fonts dataset in order to generate useful style encodings which we could compare against our other
models and use in our webapp font selector tool. As with our other models, we trained the modified
Srivatsan model until the MSE loss plateaued and the model seemed (by visual inspection) to
adequately reconstruct the missing characters for most input character sets.

Figure 3.7 shows 44 reconstructed character sets from the Srivatsan model, with 10 characters
per typeface randomly masked and reconstructed by the model. The model seems better at recon-
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Figure 3.7: Reconstructed character sets from the adapted Srivatsan model

structing some fonts than others—specifically, it seems to have performed better on typefaces with
more common styles, such as basic serif or sans-serif fonts. Stranger, more uncommon font styles
were not reconstructed as accurately (for example, the third font from left in Figure 3.7). However,
character reconstruction is not out primary objective. Our main goal is to encode typeface style using
the intermediate representation of the model, which does not correspond exactly with the model’s
character reconstruction ability. Nevertheless, the highly accurate reconstruction performance we
see for many of the typefaces, along with a somewhat-decent reconstruction of the more difficult
fonts, suggests a fairly strong representation of typeface style within the model. Further evaluations
in Chapter 4 quantitatively analyze the style-encoding capabilities of our three models.

3.2.4 Extracting Style Encodings

In order to build useful typeface selection tools based on these models, it was necessary in all three
cases to extract the model’s internal style encoding vector for each typeface. This task was relatively
trivial for the first two models: we simply passed each of the typeface character sets through the
encoder portion of our model and performed an elementwise average across the resulting vector
representation for each character, which we believed would generate a roughly-representative style
encoding for the entire typeface. For the Srivatsan model, we similarly ran our model on each of the
typeface character sets; however, since the Srivatsan model applies a variational approach, it was
additionally necessary to perform a random sample from the Gaussian distribution defined by each
typeface character set to obtain a style encoding. Because the architecture of the Srivatsan model
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does not train on individual character sets or pairs, but entire typeface character sets together, it
was not necessary to take an average of multiple character style encodings; the model, by design,
trains one generalized latent style encoding for each typeface.

3.3 System Design
In this section, we detail the process and design of turning our style encodings—generated by the
models in the previous section—into a user tool for typeface selection. We consider questions of
encoding dimensionality, end-to-end system design, and user experience in order to create a novel,
useful typeface selector tool.

3.3.1 Style Encoding Dimensionality

One initial question which emerges when training autoencoder-like models—especially with the
goal of extracting intermediate encoding vectors—is: what should be the dimensionality of those
encodings? In our case especially, there is a tradeoff between encoding more information (higher
dimensional vectors should be able to represent greater stylistic detail, to a certain point) and
usability (lower dimensional vectors represent fewer choices for users, presumably yielding easier-
to-use tools). One could, for example, train a model to generate 2-dimensional style encodings;
this could yield a very straightforward interface, such as a scatterplot of typefaces or two sliders
corresponding to the two style axes, but two dimensions may not have the capacity to represent
the many diverse aspects of typeface style. Alternatively, one could choose a high dimensional style
encoding—say, a 100-dimensional vector—which would have a greater capacity to encode font style;
however, presenting a user with a decision for each of those dimensions would be unwieldly and
overwhelming.

We tested several embedding dimensions, but ultimately chose to encode typeface style using
6-dimensional vectors. This provides substantial capacity to represent typeface style, but also rea-
sonably limits user choice. In the following section, we describe how these six dimensions translate
to a novel font selection tool; additionally, we compress these 6-dimensional style encodings into
2-dimensional space using t-SNE reduction to create an auxilliary scatterplot tool which provides
users with an additional graphical representation of the data.

3.3.2 User Experience

We experimented with several iterations of a tool for intuitively exploring a space of high-dimensional
style encodings. As mentioned previously, the question of dimensionality is a significant one when
generating style encodings for user interaction; another important consideration is how users should
interact with these high-dimensional vector spaces. Should users have full control over each di-
mension, or should they be guided in their decisions? How should high-dimensional space—which
cannot be easily visualized or conceptualized by users—be represented? What additional features
(a back button, the ability to save a typeface for later reconsideration, a search bar) would help a
user navigate this high-dimensional stylistic vector space? Moreover, what is the goal of our user
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(finding a specific font, finding similar fonts to a given font, or open exploration)? How much time
is the user willing to spend searching for a font? What does the user want to do with this font (or
fonts) once identified, and how can we assist the user to accomplish that? We hoped to design a
tool that would address these many considerations.

3.3.3 Lessons from Early User Tool Implementation

Early in the development process, we implemented a user tool which included a numerical slider
for each dimension of the model space and allowed users to generate new characters based on the
model—namely, by inputting the user-determined vector into the model decoder and displaying the
output generated character. Our goal was to visualize the dimensions of the model space, to see
what sort of information about the characters were being encoded by the model. There were a few
issues with our approach: first of all, the interface was inherently a generative task—users would
generate new characters/typefaces rather than selecting a preexisting typeface in a dataset—which
is a sort of task we later gave up (mostly because the resulting generated typefaces just don’t look
very good); secondly, this earlier interface was built atop our Basic Autoencoder model, meaning the
different dimensions dictated by the sliders would change both style and character at once. Our most
important takeaway, however, was that the tool afforded users too much control and not enough
guidance while exploring fonts. Even with a relatively low-dimensional space like ours, giving users
direct control over several continuous sliders did not make for a very good user experience. Our
current interface, while still providing many different methods and dimensions of user control, is a
bit more limited and guided with its options, hopefully making for a more useable tool.

3.4 Current Interface
The current iteration of our typeface selector tool involves two connected components which allow
users to explore our 6-dimensional vector style space in complementary ways. The first tool is an
interactive scatter plot, displaying a t-SNE reduction of our 6-dimensional style space. t-SNE [18] is
a dimensionality reduction technique, which allows typeface encodings near each other in the original
6-dimensional space to generally remain close to each other in the reduced 2-dimensional space. The
scatterplot is an intuitive and familiar representation of spatial data to most users, making it a useful
tool for navigating this style-embedding space. Users explore the scatterplot space and visualize the
fonts represented at each point; if a user identifies a font with desireable qualities, they are able to
find similar fonts by exploring the points nearby.

In order to provide another way for users to interact with this style space—one which preserves
the dimensionality of our style encodings and therefore allows users full range over the model space—
we include another typeface selector tool based on the 6-dimensional structure of our encoding data.
This tool, shown in Figure 3.8, displays a center font glyph (A is the default character, but this can
be changed by the user) of a selected typeface in the model space, and shows six alternative typefaces
of that font in a circle surrounding it. The slider, on the right hand side, represents magnitude;
when the magnitude is zero, the six surrounding fonts represent the nearest neighbors to the center
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Figure 3.8: Our novel 6-dimensional typeface selector tool, displaying several similar calligraphic
fonts nearby the Princess Sofia typeface

font (determined by Euclidean distance); when the magnitude is nonzero, the tool will search—along
all six dimensions of the model space—according to the distance defined by the slider magnitude,
and display the closest font in each of those dimensions. Therefore, as the slider grows further from
zero, the six fonts displayed will have increasingly different style from the center font. At any point,
a user can select one of the six surrounding fonts and move to that point in the model space, at
which point the slider resets to zero (nearest neighbor), and the user may continue the process again
in order to find a more optimal font. The tool also includes a shuffle button, enabling the user to
randomly select a new font, and a back button which allows the user to return to previously seen
fonts. By providing easy-to-use buttons and dynamically displaying fonts, this tool enables users to
navigate a high-dimensional model space which is difficult to conceptualize intuitively.

Our final product combines both the scatterplot and six-point tool, with several additional fea-
tures to make the tools work together effectively (see Figure 3.9). Namely, we use distinct colors
to display the location of each of the typefaces from the 6-point selector tool within the scatterplot
visualization. Additionally, when the cursor hovers over one of the typefaces in the 6-point tool,
that point grows bigger in the scatterplot tool, making it even easier and clearer to locate a typeface
within the t-SNE scatterplot space. Users click on points in both the scatterplot and the 6-point
selector, and the entire tool dynamically updates to the new typeface location. Finally, there is
a toggle under the scatterplot to display characters instead of circular points (maintaining colors)
which makes for an easier visualization of the entire space, and users zoom and pan around the scat-
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Figure 3.9: Both of our typeface selector tools side-by-side, with additional features to ease use of
both tools in tandem

Figure 3.10: Our typeface selector tool with characters displayed on scatterplot, showing many
nearby calligraphic fonts



CHAPTER 3. MODEL AND SYSTEM DESIGN 36

terplot tool to better navigate and explore different areas of the style map (see Figure 3.10). Because
of the relatively-slow rendering of these fonts, however, displaying characters on the scatterplot does
somewhat slow down the zoom capability of the scatterplot.

In order to make our implementation more streamlined, this font selector is currently limited to
the Google Fonts collection of typefaces. (This choice is described further in 3.4.2.) It would not
be too difficult to expand support for fonts outside of the Google Fonts library, however it might
require hosting SVG files of the font characters instead of loading full font files—which would become
bulky and slow given a large number of fonts. (Consequently, this would likely speed up the tool’s
performance.) The current implementation of our font selector tool can be found here.3

3.4.1 Backend (Flask)

We implement the backend of our webapp in Flask,4 a lightweight Python web server which adds
expanded capability on top of the basic HTTP GET and POST requests and includes support for
URL parameters, which we leverage to pass the magnitude data determining the server’s nearest
neighbors calculations. The backend server provides two functionalities. First, the backend serves
the full t-SNE dataset for use in our scatterplot selector tool (a small file <1MB) upon request from
the frontend webapp. Second, the server is queried to navigate the 6-dimensional model space and
compute the nearest neighbor calculations necessary for the six-point font selector tool. Leveraging
the Facebook AI Similarity Search (FAISS) library,5 which provides efficient, high-dimensional vector
similarity search, the backend first locates the style encoding for the input typeface, then computes
six new style encoding vectors in each of the six dimensions according to the user-specified magnitude.
FAISS then finds the nearest actual typeface style encoding for each of the six calculated vectors
(see Figure 3.11) and serves those font names to the client, avoiding duplicates when possible.

3.4.2 Frontend (React)

Our frontend is implemented in React,6 an open-source JavaScript library built to create interactive
web applications using modular components. For our scatterplot tool we used the Chart.js library7

to facilitate plot creation, and the 6-point font selector was built directly using React components.
For rendering the actual font files, our frontend uses the GoogleFontLoader package for React,8

which facilitates easy, dynamic font loading on webpages. This allows us to avoid serving the 2.7GB
of font binary files, alleviating significant server load; however, it limits our current implementation
to typefaces from the Google Fonts library. Although Google Fonts is widely-used and contains a
wide range of different fonts, this does mean that common proprietary fonts such as Times New
Roman and Comic Sans are not included in the current version of our font selector tool. A diagram
of our system architecture can be found in Figure 3.12.

3http://sysnet.cs.williams.edu/~25sm39/
4https://flask.palletsprojects.com/en/stable/
5https://ai.meta.com/tools/faiss/
6https://react.dev/
7https://www.chartjs.org/
8https://www.npmjs.com/package/react-google-font-loader

http://sysnet.cs.williams.edu/~25sm39/
https://flask.palletsprojects.com/en/stable/
https://ai.meta.com/tools/faiss/
https://react.dev/
https://www.chartjs.org/
https://www.npmjs.com/package/react-google-font-loader
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Figure 3.11: Search algorithm in our model space: extend search in each dimension according to
magnitude and find nearest neighbor

Figure 3.12: A network diagram of our font selector webapp system
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3.5 Accessing Code
The full implementation of this project, including the backend server, the frontend webpage, and the
training scripts for the models used to generate these style encodings, can be found in the GitHub
repository referenced below.9 We have tried our best to document these files well, so that our work
can be understood and reproduced.

9https://github.com/Mark-Hopkins-at-Williams/thesis-smagid

https://github.com/Mark-Hopkins-at-Williams/thesis-smagid


Chapter 4

Evaluation

In this chapter we evaluate the performance of our model and novel font selection interface. Our
Model Evaluation section includes a quantitative analysis of our model encodings, calculating the
average pairwise distances of font groups in our model space according to the Google Fonts typeface
categories discussed in Section 2.1.2. In our User Evaluation section, we test our font selection
interface against two alternate font selection tools with a small user study involving a font matching
task and an open-ended qualitative evaluation. While the user evaluation certainly evaluates the
usability and effectiveness of our selection interface, the model space itself—how accurately the
model encodes typeface style—also affects the usability of the tool. Therefore, this user evaluation
quantifies the combined effectiveness of the model encodings and the selector interface together.

4.1 Model Evaluation
We evaluate our models by measuring the average pairwise distances between font style encodings
within each of the 64 typeface style categories recently introduced by Google Fonts, normalized
against the overall average pairwise distance in the model space. While these categories are inherently
subjective and have some inaccuracies (see Section 2.1.2), they provide a useful grouping which is
auxiliary to our model training and therefore can be used to evaluate our model encodings.

Table 4.1: Average pairwise Euclidean distance between style encodings grouped by Google Fonts
categories, normalized relative to the average pairwise distance between all fonts in model space.
Distances less than one (closer than average) are bolded. Abbreviated from Table A.1 (Appendix).

Category Autoencoder Style Transfer Sriv. C64 Sriv. Full

average category distance 1.318 1.337 0.952 0.769

% categories beat average 35.9% 32.8% 59.4% 98.4%

appearance-art-deco 1.728 1.337 1.184 0.780

Continued on next page
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Table 4.1 continued from previous page

Category Autoencoder Style Transfer Sriv. C64 Sriv. Full

appearance-art-nouveau 0.453 0.737 0.783 0.706

appearance-blackletter 0.698 0.956 0.956 0.921

appearance-blobby 1.198 1.276 0.880 0.657

appearance-distressed 1.489 1.278 1.057 0.698

appearance-inline 2.238 1.832 1.209 0.732

appearance-marker 1.139 1.208 0.870 0.651

appearance-medieval 0.934 1.012 0.924 0.758

appearance-monospaced 0.475 0.616 0.717 0.746

appearance-not-text 6.477 11.048 0.863 0.754

· · ·

serif-didone 1.238 1.363 0.846 0.688

serif-fatface 2.478 2.896 1.082 0.755

serif-humanist 0.628 0.545 0.873 0.841

serif-modern 0.794 0.596 0.847 0.889

serif-old-style 0.522 0.753 0.695 0.814

serif-slab 1.582 1.347 1.117 0.845

serif-transitional 0.551 0.667 0.732 0.954

Table 4.1 displays representative results from this evaluation. Each row contains data for a
different Google Fonts category, and the four columns represent our four models. (Sriv. C64 is the
Srivatsan model trained only on the Capitals64 dataset, while Sriv. Full is the Srivatsan model
trained on our full dataset.) Since our distance scores are normalized, values less than one (shown in
bold) represent categories whose typeface encodings are closer than the model average, suggesting
that salient aspects of the category’s style are captured in the model encodings.

We find that the Srivatsan model, trained on the smaller Capitals64 dataset, outperforms both the
Autoencoder and Style Transfer models, with a greater percentage of Google Fonts categories having
a lower average distance between fonts than the overall pairwise average (59.4%), and the average
distance score across all the categories slightly lower than the overall average (0.952). However, when
trained on our full dataset—including Capitals64, Google Fonts, and the preinstalled fonts from
macOS—the Srivatsan model performs even better, with 63 out of the 64 Google Font categories
(98.4%) having a closer-than-average distance score, and an average distance score across all the
categories significantly lower than the overall average pairwise encoding distance (0.769).

It makes sense that the Srivatsan model would perform better with our full dataset: partially,
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Figure 4.1: Selection of fonts in the Google Fonts serif-fatface category

Figure 4.2: Selection of fonts in the Google Fonts serif-slab category
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Figure 4.3: Selection of fonts in the Google Fonts feeling-artistic category

Figure 4.4: Selection of fonts in the Google Fonts seasonal-kwanzaa category
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this may be due to simply having a larger, more representative training dataset; but this is also likely
a result of having seen the Google Fonts in its training. In the latter instance, the Srivatsan model
was able to actively optimize the style encodings for the Google Fonts typefaces, while the more
limited Srivatsan model did not have the opportunity to specifically optimize these style encodings.
This does not, however, mean that the Google Fonts style encodings of the full Srivatsan model are
of lower quality; rather, having the ability to specifically train on these fonts should result in better,
more accurate style encodings for use in our font selection tool.

Looking at the similarity scores across all the Google Fonts style categories (see Table A.1), we
can make some conclusions about the different models’ abilities to encode certain types of style.
For example, we find that all model implementations encode sans-serif style quite effectively, as the
average distance scores for most of the sans-serif style groups are lower than the overall average
distance in their model spaces. The same is true for most of the serif style groups; however, only the
fully trained Srivatsan model seems capable of encoding the style of the serif-fatface and serif-slab
groups. This makes some sense, as these two categories contain less typical serif style fonts (see
Figures 4.1 and 4.2), but the groups are also relatively small (15 and 68 fonts, respectively) and it
is hard to make a definite conclusion with such a small sample size.

We additionally find that some of the more ambiguous font style categories are not well-encoded
by our simpler models. In particular, style categories in the appearance, feeling, and seasonal groups
have low average similarity scores in the encoding spaces of the more basic models. For many of
these ambiguous style categories, only the Srivatsan model trained on our full dataset seemed to
recognize the implicit connections among their fonts. Many of these ambiguous stylistic categories
contain a wide variety of different font styles, making it difficult to explicitly identify their common
traits. For example, the fonts in the feeling-artistic and seasonal-kwanzaa categories (see Figures
4.3 and 4.4) do not seem to follow one particular or obvious style. Somewhat surprisingly, our final
model recognizes common threads among fonts even in these more abstract style groups, suggesting
that these model encodings should provide a strong foundation for style-based font selection.

4.1.1 Euclidean Distance vs Cosine Similarity

We find an interesting result when comparing the cosine and Euclidean distances in our model
evaluation. In general, we find that the models which perform strongly for Euclidean distance do not
perform as well when considering cosine similarity; and conversely, the models which perform less well
in terms of Euclidean closeness perform better with cosine similarity. For example, when comparing
the normalized category-wise Euclidean distances and cosine similarities of the Autoencoder model
(see Table 4.2), we find that a greater percentage of categories have a better-than-average similarity
when considering cosine similarity (60.9%) rather than Euclidean distance (35.9%); and the average
similarity score across all category groups is closer than average (1.125) as measured by cosine
similarity but further than average (1.318) when using Euclidean distance. On the other hand,
our full Srivatsan model performs very well on Euclidean distance scores but not as well when using
cosine similarity (see Table 4.3), with far fewer scores beating the average under the cosine similarity
metric (54.7%) and the average category-wise cosine similarity score (0.987) slightly worse than the
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overall pairwise average for the full model space. It is unclear exactly why there is a discrepancy
with cosine and Euclidean similarity evaluation in our model space. It is certainly the case that
Euclidean and cosine similarity metrics are measuring different types of vector similarity, which
might be representing different aspects of the model encodings. However, for the purposes of our
selection tool this discrepancy should not matter. Since our user tool is built around Euclidean
distance measurements, it is mainly important that our full Srivatsan model performs well under
Euclidean distance metrics—that similar font styles should be closer to each other in Euclidean
space—which it does. Cosine similarity metrics tell an interesting story about our model space, but
ultimately the metric of most importance for our purposes is Euclidean distance.

Table 4.2: Normalized average pairwise Euclidean and cosine distances across Google Fonts category
groups in our Autoencoder model space. Distances closer than the overall pairwise average (less than
one for Euclidean, greater than one for cosine) are bolded. Abbreviated from Table A.2 (Appendix).

Category Autoencoder (Euclidean) Autoencoder (Cosine)

average category distance 1.318 1.125

% categories beat average 35.9% 60.9%

appearance-art-deco 1.728 1.282

appearance-art-nouveau 0.453 0.494

appearance-blackletter 0.698 1.101

appearance-blobby 1.198 0.906

appearance-distressed 1.489 1.434

appearance-inline 2.238 1.692

appearance-marker 1.139 1.045

appearance-medieval 0.934 0.848

appearance-monospaced 0.475 0.866

appearance-not-text 6.477 2.699

· · ·

serif-didone 1.238 0.853

serif-fatface 2.478 0.666

serif-humanist 0.628 0.535

serif-modern 0.794 0.955

serif-old-style 0.522 0.544

serif-scotch 0.562 0.808

Continued on next page
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Table 4.2 continued from previous page

Category Autoencoder (Euclidean) Autoencoder (Cosine)

serif-slab 1.582 0.920

serif-transitional 0.551 0.529

Table 4.3: Normalized average pairwise Euclidean and cosine distances across Google Fonts category
groups in our full Srivatsan model space. Distances closer than the overall pairwise average (less than
one for Euclidean, greater than one for cosine) are bolded. Abbreviated from Table A.3 (Appendix).

Category Srivatsan Full (Euclidean) Srivatsan Full (Cosine)

average category distance 0.769 0.987

% categories beat average 98.4% 54.7%

appearance-art-deco 0.780 1.266

appearance-art-nouveau 0.706 0.650

appearance-blackletter 0.921 0.881

appearance-blobby 0.657 0.955

appearance-distressed 0.698 1.303

appearance-inline 0.732 1.140

appearance-marker 0.651 1.104

appearance-medieval 0.758 0.855

appearance-monospaced 0.746 0.909

appearance-not-text 0.754 1.707

· · ·

serif-didone 0.688 0.399

serif-fatface 0.755 0.664

serif-humanist 0.841 0.525

serif-modern 0.889 0.597

serif-old-style 0.814 0.477

serif-scotch 0.891 0.502

serif-slab 0.845 0.849

serif-transitional 0.954 0.468
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4.2 User Evaluation

The quick brown fox jumps 

over the lazy dog 

The quick brown fox jumps over the lazy dog 

The quick brown fox jumps over the lazy dog 
Figure 4.5: Fonts chosen for our user study (Faster One, Londrina Shadow, and Josefin Slab, from
top to bottom) with sample text “The quick brown fox jumped over the lazy dog”

We additionally conducted a small user study to qualify the effectiveness of our font selection
interface. Our test subjects were 12 college students. Each participant was given three fonts (on a
printed piece of paper) and three corresponding font identification tasks using each of three interfaces:
the basic alphabetized-list font selector in Google Docs, the category-based search from Google Fonts,
and our typeface-space selector. We chose three fonts which represent a variety of search difficulties:
one which was very distinct and would not be confused with another typeface in our set (Faster One),
another which was somewhat distinct but has some lookalike fonts in the set (Londrina Shadow),
and a third which was more generic and likely harder to find among similar fonts (Josefin Slab).
For each user, we presented one of the three fonts showing a default display text (see Figure 4.5)
and introduced one of the tools. We then gave the participant two minutes to try and identify the
font using the given tool. We repeated the task two additional times, randomizing the order of tools
between participants, so that each user tried all three tools and attempted to identify each font. By
randomizing tool order but keeping font order the same, we ensured that our performance data was
not affected by the choice of font. We kept track of several metrics: remaining time (if the user
selected a font in less than two minutes); # of clicks, mouse movements, and scrolls; and also the
selected font, which we used to calculate the normalized Euclidean distance from the correct font in
our model space (i.e. how close the user got, zero if correct) as well as percent accuracy.

Table 4.4: Quantitative results from font matching user study, averaged across trials, with distance
from correct normalized to average pairwise distance in encoding space.

selector % correct distance time left clicks scrolls mouse moves

list 0.5 0.353 0:30 8.9 72 60.4

Continued on next page
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Table 4.4 continued from previous page

selector % correct distance time left clicks scrolls mouse moves

google fonts 0.67 0.291 0:29 16.2 62.5 78.9

our tool 0.55 0.359 0:39 23.6 2.9 112.6

Table 4.4 shows the quantitative results from our user study. Given the small size of the study
(n = 12) and the many possible sources of noise in our trial, it is difficult to draw many significant
conclusions from our data. For example, it appears as though users chose slightly closer-to-correct
fonts (according to the Euclidean distance metric in our encoding space) when using the Google
Fonts selector—and were also more often correct in their selection—but given the closeness of these
numbers and the high amount of variation in our data, we cannot substantially differentiate these
performances. The data that appear most significant are our measures of clicks, scrolls, and mouse
moves: unsurprisingly, users tended to scroll more on the basic list and Google Fonts selectors—
which are both scroll-based interfaces—and tended to use more mouse moves on our tool, which
relies on mouse movements for most of its selection mechanisms. While the study was too small
to make significant conclusions about accuracy performance, it is useful to explore methods for
quantifying font selection tools and begin to understand the usefulness of our tool. Importantly,
a font matching task may not be the best method to evaluate tool performance, as oftentimes in
real-world use scenarios, users do not seek to match an exact font but rather to explore several fonts
and find a desireable one. O’Donovan et al. [12], for example, utilize two tasks in their font selection
tool evaluation: a font matching task similar to ours, and also a more subjective task asking to find
a “good” font for the design of a given document.

At the end of each trial, we also asked users to qualitatively evaluate each of the tools. For
each selector, we simply asked the user to list positive and negative aspects of each tool—what they
liked, didn’t like, found helpful, or not. These results are helpful in both evaluating our own tool
and better understanding user needs in font selection tasks. Table 4.5 shows a summary of user
responses, organized by “advantages” and “disadvantages” of each tool. For the basic list interface,
we received the same piece of feedback from most users: that alphabetical order is not useful when
selecting fonts based on style, and the lack of categories led to a long, mundane search experience.
Additionally, users reported finding the small text size difficult and found it frustrating that the tool
did not save their place in the long list when they clicked away from it. However, users did find
the simplicity of the interface useful, as well as the fact that it displays many characters at once
in the font name. For the Google Fonts category-search interface, users liked the ability to search
by attribute, but they found that the categories were often too vague or subjective; additionally,
sometimes a category they envisioned and hoped to use (e.g. “Block Letters”) was not an available
option. For our style-based tool, users liked that the interface tended to cluster fonts by similarity,
allowing them to narrow down their search and eliminate parts of the map from consideration, and
generally found the interface to be fun and explorative; however, many found the tool somewhat
unintuitive and difficult to use at first, wished they could preview more letters at once, and were
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frustrated by the lag which occurs due to character re-rendering when zooming in the map tool.

Table 4.5: Summary of qualitative results from our user study, separated into “advantages” and
“disadvantages” of each tool.

advantages disadvantages

list

simple interface

helpful if you know the name already

ability to save fonts

displays many letters for each font

no style-based search

alphabetic order is not useful

too much to scroll through

doesn’t save your place

small text

boring

google fonts

ability to preview text

search by attribute

ability to narrow down search

categories are subjective and often vague

too many categories

some categories did not exist

no open-ended descriptor search

our tool

ability to narrow down search

clustered by similarity

ability to eliminate areas of map from

search based on style

playful interface

fun to explore

difficult to understand many features

dimensional aspect unclear

font not always where expected

only able to display one letter

lag with character rendering

no text-based search feature

These qualitative data are useful in understanding how users make use of our tool and evaluating
it against other existing font selection interfaces. For example, there was a clear sentiment, expressed
by almost all of our participants, that the basic list selector was limited by not including any aspect
of style or stylistic categories in its interface. Users tended to like the Google Fonts category search,
but the subjectivity of categories was a limiting factor. Our style-encoding search represents a very
different method of font selection: one based on trained, quantitative stylistic model encodings.
While our tool was somewhat unintuitive for some first-time users, it was nonetheless received well
as a fun and useful style-based font exploration tool. Some improvements would be necessary to
make this into a finalized user-ready tool, but this proof-of-concept font selection interface suggests
that the style encodings produced by autoencoder-like neural networks can certainly be used to
create useful style-based typeface selection tools.



Chapter 5

Conclusion

In this thesis, we have detailed our research into the potential use of autoencoder-like neural networks
to encode typeface style. The most common font selection tools largely ignore style as an aspect
of typeface selection, making it difficult or impossible to ask questions like “Which fonts are most
similar to Futura?” or “What is a font which is similar to Times New Roman but more playful?”
The first half of our research involved gathering a large dataset of font character data representative
of a wide range of typeface styles, including character sets from 14,391 typefaces across the Google
Fonts and Apple libraries and the Capitals64 dataset (see Section 3.1), and training several models
based on the original autoencoder model to encode typeface style vectors of input character sets. The
second half of this project involved building a useful proof-of-concept user tool on these typeface
style encoding data, in order to demonstrate our hypothesis that the style encodings generated
by these autoencoder-based neural networks can serve as a useful foundation for style-based font
selection. Finally, we quantitatively evaluated the stylistic encoding space produced by our models,
and additionally performed a small user study to both quantitatively and qualitatively evaluate the
performance of our font selection tool.

5.1 Findings
We find that many of our models succeed in encoding certain aspects of typeface style, but our
model adapted from Srivatsan et al. [15] and trained on our larger dataset—including the fonts from
Google Fonts, Apple, and Capitals64—performed the strongest when evaluated against the novel
font attribute categories created by the Google Fonts library: when looking at Euclidean distance as
a metric of style vector similarity, all but one of the Google Fonts style categories corresponded to a
closer-than-average Euclidean similarity score. The other models captured fewer of these categories,
and we generally find that models which were more complex and disentangled character structure
(A or B, e.g.) from style (determined by typeface) performed better on these Euclidean similarity
metrics. In general, “easier” style categories—such as serif and sans-serif category groups—were
more likely to have a closer-than-average similarity score across the models, while more abstract and
stylistically-diverse categories like feeling-loud or seasonal-kwanzaa were less likely to have closer-
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than-average distance scores. We also measured these similarity scores using cosine similarity dis-
tances, and found that the cosine similarity metric told a somewhat different story than Euclidean
distance similarity—the models which performed better under Euclidean distance similarity tended
to perform poorer under cosine similarity, and vise-versa—but because our font selection tool was
built around Euclidean distance similarity, we determine that these differing cosine similarity results
are not especially important for the purpose of this work.

We additionally evaluated our font selection interface with a small user study, in which we tasked
users to match fonts using three different font selectors: a basic alphabetical list, the Google Fonts
category-based selection interface, and our style-encoding based tool. Because of our study’s small
size—only 12 participants—and the high amount of noise in our experiments, we were not able to
draw conclusions from our data about user accuracy or performance between the three interfaces.
In the qualitative portion of our study, we found that users enjoyed the novel selection interface,
its exploratory nature, and the ability to narrow down typeface search based on style; however,
many users reported finding the tool confusing or unintuitive at first and wished the tool included
certain features—such as name-based search and the ability to preview text in a typeface, rather
than selecting an individual character to display—to improve the search experience.

5.2 Future Work
There are many aspects of this research which could be improved upon or investigated further.
This section details those areas of future work, split into two overall categories: model-based im-
provements, and interface-based improvements. Overall, there is significant potential for further
research around inference-based font selection interfaces—especially until better font selection tools
are developed and introduced into mainstream word processing and graphic design software.

5.2.1 Model Improvements

There is a large diversity of approaches to building neural image models; for that reason, much time
could be spent implementing different models and comparing their performance for the typeface
style encoding task. The scope of this thesis research allowed only enough time to implement
and evaluate a few models (Basic Autoencoder, Style Transfer, and the Srivatsan model), but it
would be interesting and fruitful to explore a wider range of model approaches. However, I believe
there is great potential for style encoding models based not on bitmap pixel images, but rather on
vector graphics—which encode geometric shapes instead of pixel values. In fact, this is the native
representation of font files—which ensures that fonts can be viewed clearly and without pixelation
at any scale—and building font reconstruction and style encoding models based on these non-pixel
representations could potentially yield more effective style representations. This would also yield
much cleaner reconstructed fonts—whose representation would conveniently match the native font
representation—making generative tasks (i.e. creating new fonts based on existing data) much more
realistic. Currently, the font images generated by bitmap-based models look (at best) fuzzy and
pixelated, far from an actual useable font. Certain groups such as Carlier et al. [4] have already
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begun to explore these directions in font generation, but certainly much more work can be done to
explore this area of font style encoding and generation.

5.2.2 Interface Improvements

It is fair to say that our final font selection interface, while user friendly in certain ways, provides
users with a bit too much control over the model space. Additionally, users reported the dimension-
based selection interface to be somewhat confusing. While this is okay for our proof-of-concept—in
order to demonstrate our hypothesis that these model style encodings could be used to create a
useful style-based font selection tool—there is certainly a lot of room for improvement in the tool’s
interface. Future work, especially if this interface were to be built into a production-grade tool, would
likely involve simplifying the interface, to limit user control and make the tool more approachable.
Additionally, while our current implementation only includes typefaces from the Google Fonts library
for the purposes of simplification, it would certainly be possible to support a wider range of fonts;
however, it would probably be necessary to adapt the interface to use SVG character files rather
than loading whole font files. Under the current implementation of loading those entire font files,
the webapp interface would likely become unusably slow given enough fonts.

5.3 Lessons Learned
The process of this thesis research, spanning eight months of my undergraduate career, has been a
significant undertaking. I have grown as a programmer, a researcher, and a student. Looking back,
there are some things I would have done differently. For one, I was less diligent than I would have
liked with the organization of my code. In my thesis directory there exist over 130 Python and Bash
scripts written for small and large tasks; many of these could have been combined and condensed.
Additionally, I did not initially document these scripts as well as I could have. However, if you are
reading this, my final project repository includes all of the important scripts needed to reproduce
this project, and in those files I have attempted to make my work as clear and well-documented as
possible. You can find these files at the link referenced below.1

I have learned that research—especially with good advisors, family, and friends supporting you—
is an incredibly rewarding process. It is an experience which teaches you much more about yourself,
your approaches to work, your motivation and gumption, and how to commit to an endeavor to the
very end. For this experience, I am incredibly grateful to all those aforementioned people who have
helped me in working towards this final product. I hope that this project has been as enjoyable to
read about as it has been for me to code and write; that it might inspire or motivate someone else
in their research journey; and, perhaps, that it might even contribute to some future research in the
field. For now, I will wrap up the final edits on this draft, and soon take a very, very long nap.

1https://github.com/Mark-Hopkins-at-Williams/thesis-smagid

https://github.com/Mark-Hopkins-at-Williams/thesis-smagid
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Appendix

Table A.1: Average pairwise Euclidean distance between style encodings grouped by Google Fonts
categories, with distances normalized relative to the average pairwise distance between all fonts in
model space. Distances less than one (categories whose average distance is less than the overall
pairwise distance of the model) are in bold. The average of all category-wise distance scores, as well
as how many beat the average, is shown at top.

Category Autoencoder Style Transfer Sriv. C64 Sriv. Full

average category distance 1.318 1.337 0.952 0.769

% categories beat average 35.9% 32.8% 59.4% 98.4%

appearance-art-deco 1.728 1.337 1.184 0.780

appearance-art-nouveau 0.453 0.737 0.783 0.706

appearance-blackletter 0.698 0.956 0.956 0.921

appearance-blobby 1.198 1.276 0.880 0.657

appearance-distressed 1.489 1.278 1.057 0.698

appearance-inline 2.238 1.832 1.209 0.732

appearance-marker 1.139 1.208 0.870 0.651

appearance-medieval 0.934 1.012 0.924 0.758

appearance-monospaced 0.475 0.616 0.717 0.746

appearance-not-text 6.477 11.048 0.863 0.754

appearance-pixel 1.424 1.310 0.917 0.436

appearance-shaded 2.713 1.802 1.057 0.649

appearance-stencil 1.227 1.213 1.117 0.842

appearance-techno 1.812 1.408 1.087 0.891

appearance-tuscan 2.130 1.238 1.046 0.633

Continued on next page

54



APPENDIX 55

Table A.1 continued from previous page

Category Autoencoder Style Transfer Sriv. C64 Sriv. Full

appearance-valentines 1.861 1.671 1.072 0.729

appearance-wacky 1.674 1.244 1.086 0.722

appearance-wood-type 2.481 1.904 1.159 0.752

calligraphy-all 1.119 1.358 0.862 0.615

calligraphy-formal 0.967 1.237 0.622 0.406

calligraphy-handwritten 1.040 1.241 0.827 0.624

calligraphy-informal 1.155 1.376 0.856 0.582

feeling-active 0.963 1.075 0.882 0.621

feeling-artistic 1.222 1.434 0.896 0.646

feeling-awkward 1.238 1.185 0.992 0.694

feeling-business 0.646 0.575 0.907 0.996

feeling-calm 0.735 0.662 0.851 0.939

feeling-childlike 0.909 1.014 0.902 0.647

feeling-cute 1.038 1.130 0.962 0.736

feeling-excited 1.390 1.257 1.043 0.667

feeling-fancy 1.030 1.303 0.629 0.385

feeling-futuristic 1.405 1.124 1.069 0.983

feeling-happy 0.932 0.909 0.979 0.699

feeling-innovative 2.537 1.938 1.160 0.741

feeling-loud 1.665 1.481 1.100 0.805

feeling-playful 1.546 1.341 1.079 0.755

feeling-rugged 1.564 1.336 1.074 0.725

feeling-sophisticated 1.015 1.275 0.646 0.439

feeling-stiff 1.016 0.858 1.041 0.975

feeling-vintage 1.042 1.031 1.023 0.937

sans-serif-all 0.828 0.726 0.859 0.959

sans-serif-geometric 1.100 0.799 0.967 0.839

sans-serif-glyphic 0.743 0.671 0.812 0.823

Continued on next page
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Table A.1 continued from previous page

Category Autoencoder Style Transfer Sriv. C64 Sriv. Full

sans-serif-grotesque 0.852 0.958 0.945 0.945

sans-serif-humanist 0.727 0.629 0.786 0.940

sans-serif-neo-grotesque 0.731 0.673 0.840 0.918

sans-serif-rounded 0.836 0.873 0.901 0.876

sans-serif-superellipse 0.810 0.945 0.955 1.014

seasonal-christmas 1.440 1.637 1.106 0.750

seasonal-diwali 1.173 1.223 1.011 0.823

seasonal-halloween 1.721 1.931 1.048 0.681

seasonal-hanukkah 1.274 1.107 1.069 0.892

seasonal-kwanzaa 1.498 1.318 1.084 0.866

seasonal-lunar-new-year 1.174 1.446 0.978 0.831

seasonal-valentines 1.861 1.671 1.072 0.729

serif-all 0.840 0.794 0.889 0.927

serif-didone 1.238 1.363 0.846 0.688

serif-fatface 2.478 2.896 1.082 0.755

serif-humanist 0.628 0.545 0.873 0.841

serif-modern 0.794 0.596 0.847 0.889

serif-old-style 0.522 0.753 0.695 0.814

serif-scotch 0.562 0.576 0.879 0.891

serif-slab 1.582 1.347 1.117 0.845

serif-transitional 0.551 0.667 0.732 0.954
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Table A.2: Average pairwise Euclidean and cosine distances between style encodings in the Autoen-
coder model space, across Google Fonts categories, with distances normalized relative to average
pairwise distance across entire model space. Distance values closer than the overall pairwise average
(less than one for Euclidean, greater than one for cosine) are bolded. The average of all category-wise
distance scores, as well as how many beat the average, is shown at top.

Category Autoencoder (Euclidean) Autoencoder (Cosine)

average category distance 1.318 1.125

% categories beat average 35.9% 60.9%

appearance-art-deco 1.728 1.282

appearance-art-nouveau 0.453 0.494

appearance-blackletter 0.698 1.101

appearance-blobby 1.198 0.906

appearance-distressed 1.489 1.434

appearance-inline 2.238 1.692

appearance-marker 1.139 1.045

appearance-medieval 0.934 0.848

appearance-monospaced 0.475 0.866

appearance-not-text 6.477 2.699

appearance-pixel 1.424 0.8496

appearance-shaded 2.713 2.086

appearance-stencil 1.227 1.412

appearance-techno 1.812 1.213

appearance-tuscan 2.130 1.324

appearance-valentines 1.861 1.466

appearance-wacky 1.674 1.311

appearance-wood-type 2.481 1.296

calligraphy-all 1.119 1.138

calligraphy-formal 0.967 0.540

calligraphy-handwritten 1.040 1.178

calligraphy-informal 1.155 1.115

feeling-active 0.963 0.966

Continued on next page
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Table A.2 continued from previous page

Category Autoencoder (Euclidean) Autoencoder (Cosine)

feeling-artistic 1.222 1.198

feeling-awkward 1.238 1.270

feeling-business 0.646 0.719

feeling-calm 0.735 0.886

feeling-childlike 0.909 1.079

feeling-cute 1.038 1.156

feeling-excited 1.390 1.428

feeling-fancy 1.030 0.582

feeling-futuristic 1.405 1.246

feeling-happy 0.932 1.088

feeling-innovative 2.537 1.611

feeling-loud 1.665 1.157

feeling-playful 1.546 1.288

feeling-rugged 1.564 1.489

feeling-sophisticated 1.015 0.658

feeling-stiff 1.016 0.968

feeling-vintage 1.042 1.042

sans-serif-all 0.828 0.885

sans-serif-geometric 1.100 1.026

sans-serif-glyphic 0.743 0.890

sans-serif-grotesque 0.852 1.181

sans-serif-humanist 0.727 0.758

sans-serif-neo-grotesque 0.731 0.922

sans-serif-rounded 0.836 1.082

sans-serif-superellipse 0.810 1.112

seasonal-christmas 1.440 1.476

seasonal-diwali 1.173 1.144

seasonal-halloween 1.721 1.500

Continued on next page
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Table A.2 continued from previous page

Category Autoencoder (Euclidean) Autoencoder (Cosine)

seasonal-hanukkah 1.274 1.406

seasonal-kwanzaa 1.498 1.153

seasonal-lunar-new-year 1.174 1.740

seasonal-valentines 1.861 1.466

serif-all 0.840 0.715

serif-didone 1.238 0.853

serif-fatface 2.478 0.666

serif-humanist 0.628 0.535

serif-modern 0.794 0.955

serif-old-style 0.522 0.544

serif-scotch 0.562 0.808

serif-slab 1.582 0.920

serif-transitional 0.551 0.529

Table A.3: Average pairwise Euclidean and cosine distances between style encodings in the full
Srivatsan model space, across Google Fonts categories, with distances normalized relative to average
pairwise distance across entire model space. Distance values closer than the overall pairwise average
(less than one for Euclidean, greater than one for cosine) are bolded. The average of all category-wise
distance scores, as well as how many beat the average, is shown at top.

Category Srivatsan Full (Euclidean) Srivatsan Full (Cosine)

average category distance 0.769 0.987

% categories beat average 98.4% 54.7%

appearance-art-deco 0.780 1.266

appearance-art-nouveau 0.706 0.650

appearance-blackletter 0.921 0.881

appearance-blobby 0.657 0.955

appearance-distressed 0.698 1.303

appearance-inline 0.732 1.140

appearance-marker 0.651 1.104

Continued on next page
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Table A.3 continued from previous page

Category Srivatsan Full (Euclidean) Srivatsan Full (Cosine)

appearance-medieval 0.758 0.855

appearance-monospaced 0.746 0.909

appearance-not-text 0.754 1.707

appearance-pixel 0.436 1.300

appearance-shaded 0.649 1.362

appearance-stencil 0.842 1.214

appearance-techno 0.891 1.301

appearance-tuscan 0.633 1.054

appearance-valentines 0.729 1.018

appearance-wacky 0.722 1.223

appearance-wood-type 0.752 1.199

calligraphy-all 0.615 0.933

calligraphy-formal 0.406 0.393

calligraphy-handwritten 0.624 0.986

calligraphy-informal 0.582 0.933

feeling-active 0.621 0.924

feeling-artistic 0.646 0.873

feeling-awkward 0.694 1.215

feeling-business 0.996 0.756

feeling-calm 0.939 0.892

feeling-childlike 0.647 1.104

feeling-cute 0.736 1.124

feeling-excited 0.667 1.301

feeling-fancy 0.385 0.374

feeling-futuristic 0.983 1.189

feeling-happy 0.699 1.111

feeling-innovative 0.741 1.470

feeling-loud 0.805 1.086

Continued on next page
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Table A.3 continued from previous page

Category Srivatsan Full (Euclidean) Srivatsan Full (Cosine)

feeling-playful 0.755 1.214

feeling-rugged 0.725 1.336

feeling-sophisticated 0.439 0.377

feeling-stiff 0.975 1.019

feeling-vintage 0.937 0.879

sans-serif-all 0.959 0.902

sans-serif-geometric 0.839 1.009

sans-serif-glyphic 0.823 0.906

sans-serif-grotesque 0.945 1.067

sans-serif-humanist 0.940 0.746

sans-serif-neo-grotesque 0.918 0.974

sans-serif-rounded 0.876 1.031

sans-serif-superellipse 1.014 1.053

seasonal-christmas 0.750 1.201

seasonal-diwali 0.823 1.036

seasonal-halloween 0.681 1.264

seasonal-hanukkah 0.892 1.242

seasonal-kwanzaa 0.866 1.222

seasonal-lunar-new-year 0.831 1.207

seasonal-valentines 0.729 1.018

serif-all 0.927 0.577

serif-didone 0.688 0.399

serif-fatface 0.755 0.664

serif-humanist 0.841 0.525

serif-modern 0.889 0.597

serif-old-style 0.814 0.477

serif-scotch 0.891 0.502

serif-slab 0.845 0.849

Continued on next page
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Table A.3 continued from previous page

Category Srivatsan Full (Euclidean) Srivatsan Full (Cosine)

serif-transitional 0.954 0.468
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